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We present simulations of the basic analytic model of weakly charged polyelectrolytes: monovalently
charged monomers with Debye-Hu¨ckel interaction coupled by harmonic springs. Quantities such as the chain
radii, bond lengths, structure factors, persistence lengths, and scaling properties were examined. The persis-
tence lengthLP shows a sublinear dependence on the screening lengthr D51/k (LP;k2y,y,1) in strong
contrast to all known analytical approaches which propose eithery52 or y51. The observed exponenty
varies as a function ofk and the bond lengthb. @S1063-651X~96!03308-9#

PACS number~s!: 61.25.Hq, 36.20.2r, 87.15.He, 05.20.2y

I. INTRODUCTION

The theoretical understanding of polyelectrolytes is rather
weak compared to that of neutral polymers@1#. The main
reason is the occurrence of the long-ranged Coulomb inter-
action. The large number of degrees of freedom of the coun-
terions and their fluctuations form another serious problem.
Furthermore, the comparison between experiment and theory
is often very difficult because of different regions of validity
concerning the density of the solution. Scattering experi-
ments need a certain contrast and therefore it is almost im-
possible to study extremely dilute solutions, which are the
topic of most theories. Additionally, experiments as simula-
tions face severe finite size effects in search for general
asymptotic behavior. In such a situation, computer simula-
tions have the important possibility to build a bridge between
theory and experiment as they can test theoretical aspects as
well as experimentally measurable quantities under well con-
trollable conditions~see, e.g.,@2#!.

The aim of the present work is not to give a description of
polyelectrolytes in solution that is as physical as possible but
to test certain theoretical concepts for model systems. The
question whether the theories of Odijk@3# and Skolnick and
Fixmann @4# ~for the rest of this paper referred to as OSF!
remain valid for intrinsically flexible chains@5,6# or whether
several variational ansatzes@7–9# give the right description
is addressed in this work. Because we are looking for the
advantages and shortcomings of the two treatments of the
very same model, we employ exactly the same Hamiltonian
as all the above papers. The polymers are modeled by bead-
spring chains. Every neutral part in between two charges,
which is supposed to be a random walk, is represented by a
harmonic spring and the charged monomers interact via
screened Coulombic interaction. The screening of the coun-
terions is usually accounted for by the solution of the linear-
ized Poisson equation, the Debye-Hu¨ckel ~or Yukawa! po-
tential VDH . This, however, is known to be a rather crude
approximation @10#. With r D51/k being the screening
length the potential reads

VDH5
q2

4pee0

exp~2kr !

r
5lBkBT

exp~2kr !

r
, ~1!

whereq is the charge per monomer andee0 is the dielectric-
ity constant of the solvent.lB5q2/4pee0kBT is the Bjerrum
length, which describes the strength of the bare Coulomb
interaction. Therefore the present chains are given by the
following Hamiltonian:
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with N being the number of beads,r i j5urW i2rW j u the distance
between two charges,qi the charge of thei th bead,kB
the Boltzmann constant, andT the temperature.b5A^bW 2&
(bW bond vector;̂ bW &50W ) is the expectation value of the end-
to-end distance of a corresponding random walk, which is
supposed to model a neutralQ chain in between the charges
with b2 Kuhn steps. This also allows a comparison to experi-
mental systems. All lengths are measured in units of such a
Kuhn segment length. Some models use a continuous charge
distribution. For large systems~and especially large and me-
dium distances! there should be no difference between these
approaches and our model. In this respect our model is
nearer to experiments and therefore should be the choice.

In Sec. II the computational method and the calculated
quantities are introduced in detail, followed by results con-
cerning chain radii, bond stretching, and attempts to find
scaling variables. In Sec. IV the scaling plots of our system
are shown. A crossover from a blob pole behavior to the
self-avoiding walk~SAW! regime is found. In Sec. V a more
detailed test is employed to directly access thek dependence
of the persistence length by calculating the bond angle cor-
relation including a careful analysis of finite size effects. To
support these overall results, the chain structure factor is ana-
lyzed in Sec. VI. Similarities with recent computer simula-
tions of strongly charged polyelectrolytes@10# are found. Fi-
nally, Sec. VII will give a short summary and outlook.*Present address.
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II. MODEL AND SIMULATION METHOD

As already noticed, the theoretical description is based on
an underlyingQ chain, represented by the harmonic poten-
tials between successive monovalently charged monomers.
Those monomers interact via a Debye-Hu¨ckel potential lead-
ing to the Hamiltonian~2!. For such a system with strongly
fluctuating bond lengths, there is a natural need to equilibrate
the short and long length scales as well as possible. To do so,
we combine a velocity verlet molecular dynamics~MD!
coupled to a heat bath with a Monte Carlo procedure~MC!.
For the Monte Carlo part the off-lattice pivot algorithm
turned out to be the most efficient choice. The MD part is
performed at constant temperaturekBT51.0e using the
Langevin thermostat with damping constantg51.0t21 and
time step 0.0125t wheret is the characteristic time of the
system@11#. We typically start with some 1000 MD steps to
allow for initial bond stretching. Then the pivot procedure
equilibrates the large scale structure~several 10 000 steps!.
Then MD mixed with rare pivot steps generates the final
configurations. For comparison also simulations with fixed
bond length were performed. In this case only the pivot al-
gorithm is used. Systems embedded in three and in two di-
mensions were simulated. The latter was done to compare
our results for the bond angle correlation function with those
of Barrat and Joanny@12# . The equilibrium is defined by
comparison of two extreme starting conformations: the ran-
dom walk and the totally stretched state. The equilibrium is
reached when both simulations produce the same values for
several testing quantities such as the end-to-end distance
Rend, the radius of gyrationRG , and the bond lengthb. The
program uses the vector facilities of a CRAY YMP super-
computer and simulates 640 independent polyelectrolyte
chains in parallel.~Only for N5512 the number of polymers
was reduced to 320.! In a similar way the algorithm can be
parallelized trivially. When equilibrium is reached, the quan-
tities of interest are averaged over the 640 chains. Note that
we have 640 truly independent states, giving true statistical
errors of 4% only. For local quantities that allow for an in-
trachain average the statistics are even better.

The screening parameterk was varied fromk50.001 up
to k50.48 ~in extreme cases! giving a Debye screening
length between 1000 and 2.083.̄ This covers length scales
smaller than the distance between two successive charges up
to larger than the whole chain extension. The Bjerrum length
is fixed tolB51. The unit length is defined by the length of
the Kuhn step of the underlying neutral random walks be-
tween the charges, which are modeled by the harmonic
springs. Several values of the degree of polymerizationN
allow one to examine the finite size effects, which appear to
be very strong and extremely relevant in experiments too
~see Sec. V!. By combining the different chain lengths with
five values of the bond lengthb, the whole experimentally
relevant range of molecular weights is covered. This fact
points out that the comparison of our results~e.g., for the
structure factor, see Sec. VI! with experimental data should
be possible and allow some conclusions on the general va-
lidity of the Debye-Hu¨ckel approach. We use chain lengths
N516, 32, 64, 128, 256, and 512 and bond lengthsb52, 4,
8, 10, and 16. Taking into account the relationN;Rend

2

for a random walk, our largest polymer consists of

(N215511)3(b5162)55113256'131 000 monomers.
Comparing this system to a NaPSS-PS block copolymer
~molecular weight:mNaPSS5221 andmPS5104) we reach
molecular weights beyond 13 000 000 g/mol, which is be-
yond experiment. Even for strongly charged chains our sys-
tems lie in the experimentally relevant region; e.g., a
N5512 bead chain mapped on a NaPSS in water under the
assumption that every third monomer is charged~which is
shown to be reasonable by experiments—monomer size
'2.5Å, lB'7.14Å—and very similar to ourb52 chains!
models a molecular weight of at least 340 000 g/mol. All in
all, we can cover the experimentally relevant parameter
space by varying our parameters.

III. FIRST RESULTS

Due to the Coulomb repulsion of the charges, the springs
between monomers become stretched. The usual assumption
is that the chain structure inside a blob is not strongly af-
fected by the Coulomb interaction. Figure 1 shows an ex-
ample of the stretching as a function ofk. As expected, the
smaller k, the stronger is the elongation. With increasing
bond length~reduced effective charge density! the relative
stretching decreases for fixedk. Taking all the data, the ten-
dencies are unambiguous but no simple power law can be
deduced. It is important to take care of finite size effects
resulting from the free chain ends. Apart from these end
monomers, the bond length distribution is flat.

A characteristic quantity for the shape of the chains is the
ratio r5Rend

2 /RG
2 as it sensibly measures the large scale

stretching due to the Coulomb repulsion. Here

Rend5A(rWN2rW1)
2 is the end-to-end distance and

RG5A(1/N)( i51
N (rW i2rWCM)

2 is the radius of gyration. For
random walks this ratio equals 6 while for a totally stretched
chain 12 is expected. A value around 6.3 is known for SAW.
Figure 2 shows that beginning in a SAW regime the chains
are stretched up to a value of 10. Even for extremely weakly
screened systems (r D51/k . chain dimensions! the chains
are not totally stretched. This is in accordance to recent
simulational results of strongly charged polyelectrolytes
@10#. Nevertheless in Sec. IV it is shown that these chains

FIG. 1. Relative stretching of the bond lengthb as a function of
1/k for N5128.
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form straight blob poles. Furthermore a saturation is found.
This kind of finite size effect will play an important role in
the analysis of the bond angle correlation function~see Sec.
V!. Increasing the degree of polymerization from low values
leads to stronger stretching as the mean energy per monomer
increases. WhenN is large enough, the effects of screening
show up, leading to a reduction ofr . For infinitely largeN
~and finiter D) all systems converge towards the SAW value
around 6.3. As Fig. 3 shows, the crossover region is strongly
dependent onb andk.

The electrostatic persistence lengthLP is the main target
of our analysis. First we take a direct route to calculate
LP . Rend for a wormlike chain is given by@15#

Rend
2 52LLP22LP

2 S 12exp
2L

LP
D ~3!

with L5(N21)b2 the contour length. HavingL andRend
2

LP is determined numerically. The limiting behavior is that
of a random walk and not of a self-avoiding walk. Therefore
the SAW behavior shows that our chains are not exactly
wormlike. Assuming the variational methods to be right,
LPk should be independent ofk while in the OSF case
LPk;1/k. Plotting LPk versus 1/k leads to negatively

sloped curves meaning a sublinear 1/k dependence ofLP
~see Fig. 4!. In spite of the fact that our chains are not exactly
wormlike and of the finite size effects, this result is a clear
hint that both theoretical predictions could be wrong for all
relevant chain lengths.

Some theoretical approaches@13# use kb and lB /b as
scaling parameter combinations. We checked the scaling of
our data withkb (lB is fixed! aiming for a reduction of the
effective dimension of our parameter space. As expected by
looking at the explicit form of the Debye-Hu¨ckel potential no
simple scaling can be figured out. Figure 5 demonstrates this
for the simplest case.

IV. SCALING

In spite of the failure of these simple ‘‘scaling’’ attempts
there should be a possibility to work out the scaling proper-
ties of our data, using the concept of electrostatic blobs@1#.
In analogy to neutral polymers a blob is defined by the num-
ber of monomersge for which the total energy equalskBT.
As noticed in Sec. III, the bonds between the charges are
stretched so that the assumption of unperturbed chains within
the blobs has to be dropped. Nevertheless, this definition of

FIG. 2. r5Rend
2 /RG

2 as a function ofk for b52.

FIG. 3. r5Rend
2 /RG

2 as a function ofN.

FIG. 4. LPk vs 1/k for N5128. The persistence lengthLP is the
numerical solution of the wormlike chain equation~3!.

FIG. 5. End-to-end distance vsN for bk5const.
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subunits of the chain is very useful.
First of all, the question of how to estimate the blob di-

ameterj has to be settled. To avoid unnecessary assumptions
~e.g., ideal chain statistic inside a blob! we calculatedj from
our data. The blob is defined by the number of monomers
ge for which the sum of electrostatic and bond stretching
energy equals the thermal energykBT. Clearly, only the ex-
cess energy beyond the neutral elongation of the bond is
taken into account. We restrict ourselves to central mono-
mers to avoid artificial chain end effects. The knowledge of
ge and of the internal distances determinesj. Thek depen-
dence of both quantities is rather weak~slow decrease with
decreasingk), while the influence of the bond length is
much stronger.

The meaning of these blobs is less profound as for neutral
monomers, especially due to the loss of ideal chain statistics.
Nevertheless, this kind of ‘‘k-dependent coarse graining’’ is
physically well motivated and strongly recommended by our
configurations~see Fig. 6!.

From neutral chains one would expect a scaling of the
chain radii withj. This, however, does not work out here as
Fig. 7 shows. Obviously the persistence lengthLP is not a
simple linear function ofj. Remembering that the persis-
tence length defines a kind of stiff chain segment length the
chain dimensions should show a characteristic dependency
on LP . Therefore one should investigateRend plotting
Rend
2 /LP

2 versus the number of persistence lengths per chain.
Using the Odijk formula and a formula due to the variational
ansatzes a direct comparison of the scaling properties of the
two different theories is possible. All variational theories
predictLe;1/k. Explicitly for a blob picture Ha and Thiru-
malai gave@8#

Le;
ge
k
AlB

j
. ~4!

The OSF theory@3,4# predicts

Le5
lB

4k2A2 , ~5!

whereA is the distance between two charges along the con-
tour of the chain. Khokhlov and Khatchaturian@5# claim that
after averaging over the transversal fluctuations of the flex-
ible chains the same formalism applies to this ‘‘renormal-
ized’’ chain, which is represented by a chain of blobs. There-
fore, within the framework of a blob picture they formulate
for LP explicitly:

Le;
lBge

2

k2j2
. ~6!

This means thatA is defined asA;j/ge since every blob
consists ofge charges, which have a mean distance ofj
~imagine two charges of strengthge in the center of two
adjacent blobs!. The number of persistence lengths per chain
is calculated asNj/geLP . N/ge is the number of blobs so
that Nj/ge is the contour length of the blob chain. This
means that the quantity at the abscissa is the ratio of contour
length to persistence length. The results for both theories are
shown in Figs. 8 and 9. It is important to realize that the
persistence length is the sum of the electrostatic partLe and
the intrinsic persistence lengthL0:

LP5Le1L0 . ~7!

In the case of a blob pictureL05j. UsingL0 equal to unity,
which is the intrinsic persistence length of the neutral chains
between the charges, leads to scaling plots similar to the ones
generated according to~4! and~5! with a little worse scaling
in the SAW regime. Nevertheless the intrinsic part is of enor-
mous importance. OmittingL0 and usingLe only destroys
the scaling in the SAW regime in the OSF case, while the
variational scaling holds quite well for our parameters. This
accounts from the fact that in these cases the inequality

FIG. 6. Typical conformation of a blob pole with blobs indi-
cated by circles (N532, b52, andk50.04). The projection is
chosen to display the longest axis in the paper plane.

FIG. 7.Rend
2 /j2 as a function ofL/j: No scaling of our data with

j is found.
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Le,OSF!L0 holds, meaning that the electrostatic contribution
is much smaller than the intrinsic persistence length while
Le,var*L0.

From the first view it is clear that both theories show quite
good scaling. There is no way to distinguish them. To ex-
plain this, it is necessary to divide the plot into two parts. For
smallX values the plots show straight lines with slope two.
This is the regime where the chains build up blob poles. The
dependence onLP cancels out as is easily seen:

Re
2

LP
2 ;X25

N2j2

ge
2LP

2 ⇒Re
2;

N2

ge
2 j2.

The end-to-end distance is proportional to the number of
blobs times the blob diameter. For larger numbers ofLP per

chain the behavior crosses over to a regime of slope 1.2. This
is a SAW regime where the dependence onLP is explicit:

Re
2

LP
2 ;X6/55

N6/5j6/5

ge
6/5LP

6/5⇒Re
2;SNj

ge
D 6/5LP4/5.

Here something should be seen, but thek dependence of
Re again seems to be so weak that no difference can be
figured out. The scaling is dominated by the intrinsic part
and is therefore more or less anN scaling. All in all, the fact
that such an enormous amount of data collapses nicely over
a lot of decades onto one curve, which describes very well
the chain behavior from the blob pole in the case of weak
screening up to the SAW regime, demonstrates thatLP is the
relevant statistical segment length. As a central result of this
chapter remains the demand to find a more sensitive quantity
to measure the persistence length directly.

V. BOND ANGLE CORRELATION FUNCTION
AND PERSISTENCE LENGTH

The most direct definition ofLP is simply geometrical
@14#:

LP5
1

2 (
i51

N/221

^bWN/2•bWN/21 i1bWN/2•bW ~N/2!2 i&, ~8!

bW i again being thei th bond vector. In the case of exponen-
tially decaying angular correlations, this approach is identi-
cal with the calculation of the bond angle correlation func-
tion ( fBAC). fBAC can easily be formulated for a continuous
model by comparing the normalized tangent vectors att and
t1Dt. In our bead spring model,f BAC is defined via the
scalar product of two normalized bond vectors:

f BAC~k!5K bW j

ibW j i
•

bW j1k

ibW j1ki
L 5^cos@f~bW j ,bW j1k!#&, ~9!

wheref(bW j ,bW j1k) is the angle between the two bond vectors
and ^ & indicates the average over all polymers.

Since the persistence length is defined as the decay con-
tour length of all angular correlations,f BAC should show—
after some ‘‘transient time’’ representing the inner part of the
blob—an exponential decay, similar to a wormlike chain for
which

fBAC~k!;expS 2
k

LP
D ~10!

applies, giving

B~k!5 ln^cosf~bW j ,bW j1k!&; ln expS 2
k

LP
D52

k

LP
.

~11!

To improve averaging, the reference pointj is not fixed but
moves along the chain. Clearly, this procedure leads to a big
improvement for small and mediumk while the effect is
rather poor for largek because only few large distances are

FIG. 8. Scaling plot due to the variational ansatzes:Rend
2 /LP

2 vs
L/LP. L/LP is the number of persistence lengths per chain,
Le;1/k.

FIG. 9. Scaling plot due to the OSF approach:Rend
2 /LP

2 vs
L/LP. L/LP is the number of persistence lengths per chain,
Le;1/k2.
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available. To avoid problems due to free ends, the outermost
blobs are not taken into account~e.g., 20 monomers on each
side forN5128). Another correlation function was defined
by calculating the bond angle correlation function of the
linking vectors between the centers of masses of the blobs.
All these methods lead to the same results within the error-
bars. Only data averaged with the first method are shown.
Figures 10 and 11 showB for the systemN5128,b52 and
N5256, b58, respectively, at the specifiedk values. The
corresponding Tables I and II give the resulting persistence
lengths and effective exponentsy for subsequentk values.
All exponents are clearly smaller than one. In theb52 case
saturation is found. The exponent goes to zero fork going to
zero displaying strong finite size effects since the persistence
lengths exceed the size of the chains. Therefore the ability of
the chain to stretch is exhausted and the increase inLP van-
ishes. To prove the validity of our arguments we have to
compare these systems with larger chains. Figures 12 and 13
show two examples. There is an enormous difference for
b52 and k50.01, while the opposite extreme (b516,

k50.04! shows no finite size effects. Figure 13 points out
that this badk value for b52 works quite well forb58,
because the regarded chain is roughly a factor of 4 longer
and therefore not influenced that strongly by finite size ef-
fects. It is obvious that this effect will show up in experi-
ments as well.

All simulated systems were analyzed in this way and lead
to the same answer. To figure out the influence of the bond
stretching, we performed simulations with fixed bond lengths
~see Sec. II!. Additionally, we analyzed two-dimensional
systems for both cases. The qualitative behavior is the same
in all cases: The effective exponent of thek dependence of
the persistence length is continuously varying and smaller
than 1~see Fig. 14!:

LP;1/ky; y,1. ~12!

No unique power law can be derived, even if finite size ef-
fects and the statistical errors of the data are taken into ac-
count. Nevertheless, this puts the results of Secs. III and IV
on a profound basis. But they are in strong contrast to all
known analytical results. Recently, a new field theoretical
approach was suggested pointing towards a sublinear behav-
ior @16#. The common tendency with our data is encouraging,
however, no mapping of the data was possible so far.

FIG. 10. Logarithm of the bond angle correlation function for
N5128,b52 and the specifiedk values.

FIG. 11. Logarithm of the bond angle correlation function for
N5256,b58 and the specifiedk-values.

TABLE I. Persistence lengthsLP and effective exponentsy.

b52
N5128 N5256

1/k LP LP /L y LP LP /L y

400 948.6 1.853 2366.88 2.311
0.11 0.37

100 813.56 1.589 1418.44 1.385
0.32

50 652.16 1.274 - 0.87
0.78

25 380.96 0.744 423.72 0.414
0.86 0.80

6.25 116.32 0.227 139.24 0.136
0.55 0.46

2.083̄ 63.44 0.124 84.28 0.082

TABLE II. Persistence lengthsLP and effective exponentsy.

b58
N5128 N5256

1/k LP LP /L y LP LP /L y

400 6508.16 0.794 8976 0.548
0.33 0.39

100 4114.56 0.502 5246.08 0.320
0.53 0.58

25 1954.56 0.239 2361.6 0.144
0.31 0.45

6.25 1276.8 0.156 1262.08 0.077
0.43

2.083̄ 791.04 0.048
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VI. STRUCTURE FACTOR

To examine the chain conformation in detail at all length
scales we calculate the spherically averaged structure factor
S(q). Additionally, the structure factor along the main axes
of the gyration tensor of the chains is determined. The struc-
ture factor allows direct comparison to experimental data and
is a necessary input for some theories@17,18#.

S~q!5K 1NU(
i, j

N

exp@ iqW •~rW i2rW j !#U2L . ~13!

This formula demonstrates thatS(q) is the Fourier transform
of the pair correlation function. The restriction to a certain
direction means a restriction ofqW to this direction.

The scaling ofS(q) is predicted in analogy to the neutral
case, whereSneutral(q) scales asq

21/n, n being the exponent
of theN dependence of the chain radii~e.g.,n50.5 for ideal
chains and roughly 0.59 in good solvent!. The range of va-
lidity is determined by the extensions of the polymer:

2p

Rend
!q!

2p

b
.

Viewing the polyelectrolytes as composed of rodlike seg-
ments of lengthLP , which form an ideal chain, the scaling is
expected to have the following form:

S~q!;q22 for q!
2p

LP
~14!

and

S~q!;q21 for q@
2p

LP
. ~15!

Therefore theq value at the crossover can be used to calcu-
late a measure for the persistence length.

First of all, theN dependence ofS(q) is examined to
determine possible finite size effects. Figure 15 demonstrates

FIG. 12. Finite size effects on the logarithm of the bond angle
correlation function:b52 andk50.01.

FIG. 13. Finite size effects on the logarithm of the bond angle
correlation function:b58 andk50.01.

FIG. 14. Persistence length based onB vs 1/k. The two lines in
the upper left corner indicate the slopes predicted by OSF~dashed!
and the variational methods~solid!. The model system should give
the best description for weakly charged polyelectrolytes and there-
fore the upper curves.

FIG. 15. Finite size effects on the structure factor forb52 and
k50.01.

54 2659PERSISTENCE LENGTH OF THE DEBYE-HU¨ CKEL . . .



that the finite size effects onS(q) are relatively weak, since
all curves deviate from theN5256 line only roughly at
q'2p/Rend.

Looking first at the spherically averaged quantity shows
that the logarithmic slopes seem to vary continuously be-
tween one (k very small, b52) and two (k very large,
b516). As expected, the chains get stiffer with decreasing
k, leading to smaller slopes. This is consistent with the pic-
ture of the blob pole coming from scaling. To make this
point even clearer, a plot of the structure factor parallel to the
first main axisSi~q! is given. In the low-q regime pro-
nounced oscillations are recognized~see Fig. 16!. Such os-
cillations are expected for a rigid rod of which the structure
factor is given by

Srod~q!5
1

N

12cos~Nbq!

12cos~bq!
. ~16!

The first minimum is located atqrod52p/Rend52p/Nb.
This dependence is reflected by our data. The first minimum
is especially for strong interacting systems given byRend.
Clearly, increasingk leads to a shifting and a smearing out
of these oscillations.

The analysis of the component perpendicular to the first
main axisS'(q) is much more difficult. The elongation of
the chain is rather small in this direction limiting theq in-
terval of interest. Due to statistical fluctuations, it is difficult
to determine very precise values, but the tendency is clear:
The exponent is a function ofb andk and varies in the range
0.58,n,0.8. All in all, the behavior ofS'(q) is similar to
the spherical averaged quantity in the high-q regime. Similar
n values were actually found in simulations of strongly
charged polyelectrolytes@10#.

The spherically averaged structure factor shows a kink
between two regimes of different slopes. The low-q part is
well fitted with a Debye function~which is expected at least
in the Guinier region!. The high-q regime can be described
by a generalized Debye function as has been used success-
fully for strongly charged polyelectrolytes@10#:

SGD~q!5
N

11~q f !1/nD
, ~17!

wheref andnD are fitting parameters. In the case of an ideal
chain f equalsRG /A2 and nD50.5. For our systemsf is
roughlyRG andnD varies between 0.59 and 0.92. Again the
variation over the whole conformational range from a SAW
to an almost rodlike chain is reflected by these exponents
~see Figs. 17 and 18!.

The kink can, for instance, be identified by the crossing
point of the two fitting functions. Using thisq value to cal-
culate a measure of the persistence lengthLP leads to results
that agree qualitatively very well with the values of the bond
angle correlation function~see Fig. 19 and Table III!. Again,
the sublinear 1/k dependence is recovered. This result is in
strong contrast to simulations that take the counterions ex-
plicitly into account where a 1/k dependence was suggested
by the data@10#.

If we had taken the neutral monomers between the
charges into account, we would have found a nontrivial ex-
tension of the structure factor to higherq values. Remember-

FIG. 16. Structure factor parallel to the first main axis of gyra-
tion for N5256 andb52.

FIG. 17. Spherically averaged structure factor and fits for
N5256,b58, andk50.48.

FIG. 18. Spherically averaged structure factor and fits for
N5256,b52, andk50.0025.
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ing that our bonds represent random walks and knowing the
structure factor of a random walk to be a Debye function, we
are able to extend the calculated structure factor of our poly-
electrolyte chains to higherq values by introducing the De-
bye function into the plot. The measuredS(q) and the Debye
function leave only a small gap that can be smoothly contin-
ued to give one curve. The gap is due to the pair correlation
of monomers of different random walks which is inevitable
in this easy approach. By introducing ideal neutral chains of
step width one,b2 steps, and accurate end-to-end distance
and calculating the structure factor of this system, the valid-
ity of this simple approach is proven as Fig. 20 demonstrates.

All in all, the calculation of the structure factor repro-
duces only the roughest features of the scaling picture~kink
at LP separates two regimes of different slopes!. Unfortu-
nately, it resists fitting any detailed theoretical descriptions.
All conclusions of the former sections are verified. Espe-
cially the results on the persistence length are recovered,
impressively showing the overall consistency of the present
analysis.

VII. CONCLUSIONS

The behavior of single, intrinsically flexible, weakly
charged polyelectrolyte chains is examined by extensive nu-
merical simulations. Varyingk, b, andN the whole relevant
parameter space can be covered.k-dependent chain stretch-
ing on both short and long length scales is reported. The
scaling plots of Sec. IV demonstrate the crossover from a
blob pole to a self-avoiding walk regime.

In order to clarify the question whether the OSF theory is
extendable to intrinsically flexible polyelectrolytes@5,6#, we
focused on the calculation of the electrostatic persistence
length, because this quantity is given explicitly by all theo-
retical approaches. Using several different methods, we al-
ways end up with the same result: The persistence length
depends in a sublinear way on 1/k without showing a clear
unique power law:

LP;
1

ky , y,1.

This is in strong contrast to the analytical predictions, which
favor 1/k2 ~OSF @3,4#! or 1/k ~variational methods@7–9#!.
Although some systems are influenced by strong finite size
effects, which will be relevant even for experimental systems
but are controllable in computer simulations, this result is
unequivocal. A 1/k2 dependence can definitively be ex-
cluded. There exists no hint for a convergence towards a
1/k behavior in our data, although we choose the smallest
Debye radius smaller than the smallest bond length and the
biggest larger than the whole chain. Unfortunately, no clear
power law with a well-defined exponent shows up. The ex-
ponent itself seems to depend onb and k for all relevant
chain lengths :y5y(k,b). Especially the structure factor
calculations strongly support these results.

Recently, a sublinear dependence ofLP with respect to
1/k was suggested by a new field theoretical, variational ap-
proach@16#. The qualitative agreement of this solution with
our data is an encouraging sign. It can be concluded from our
simulations that the stiffness of intrinsically flexible poly-
electrolyte chains is much less influenced by the screening

TABLE III. Persistence lengthsLP and effective exponentsy
from structure factor

N5256
b52 b58

1/k LP y LP y

400 305.45 543.53
0.05 0.16

100 284.82 437.58
0.23 0.38

25 207.09 257.61
0.53 0.71

6.25 99.94 96.84
0.73 0.77

2.083̄ 44.79 41.54

FIG. 19. Persistence length based on the crossing of the fitting
functions vs 1/k. As theq values measure direct distances in space
and not along the contour of the chain the absolute values differ
from those resulting from the bond angle correlation. For quantita-
tive comparison, the values have to be scaled by the bond length
b. This would not lead to new information as the essential sublinear
behavior will not be affected by this transformation.

FIG. 20. Structure factor extended by introduction of neutral
monomers compared to the structure factor of the charges only and
to a Debye function forN5256,b58, andk50.01.
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parameter as expected. For that the fraction of charges
~equivalent to 1/b2) plays an important role, too, since it
determines the entropy. It is obvious from our data that the
entropic part of the free energy is underestimated by all
known analytical approaches for~at least! all relevant chain
lengths. While most large scale properties are well under-
stood by simple arguments, there exists a lack of detailed
understanding, as is demonstrated at the example of the elec-
trostatic persistence length. An interesting challenge for fu-
ture work on this topic should be the variation of the intrinsic
persistence length to study the crossover from the OSF re-

gime, where the intrinsic persistence length is dominating, to
the regime of extremely flexible chains described by our
data.
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