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Persistence length of the Debye-Htkel model of weakly charged flexible polyelectrolyte chains
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We present simulations of the basic analytic model of weakly charged polyelectrolytes: monovalently
charged monomers with Debye-ekel interaction coupled by harmonic springs. Quantities such as the chain
radii, bond lengths, structure factors, persistence lengths, and scaling properties were examined. The persis-
tence lengthLp shows a sublinear dependence on the screening lepgtil/x (Lp~«~Y,y<1) in strong
contrast to all known analytical approaches which propose eithe2 or y=1. The observed exponet
varies as a function ot and the bond length. [S1063-651X96)03308-9

PACS numbdrs): 61.25.Hq, 36.20-r, 87.15.He, 05.26:y
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The theoretical understanding of polyelectrolytes is rather
weak compared to that of neutral polymedg. The main
reason is the occurrence of the long-ranged Coulomb intefwhereq is the charge per monomer aee,, is the dielectric-
action. The large number of degrees of freedom of the counity constant of the solvenhg=q?/4meekgT is the Bjerrum
terions and their fluctuations form another serious problemlength, which describes the strength of the bare Coulomb
Furthermore, the comparison between experiment and theoigteraction. Therefore the present chains are given by the
is often very difficult because of different regions of validity following Hamiltonian:
concerning the density of the solution. Scattering experi-
ments need a certain contrast and therefore it is almost im-

N—-1 N i—-1
possible to study extremely dilute solutions, which are the > 3kBT(r»__r»_ 2+ S\ ok TeXIO(—Kfij)
topic of most theories. Additionally, experiments as simula- <1 o2p? VY e & TR i ’
tions face severe finite size effects in search for general 2

asymptotic behavior. In such a situation, computer simula-

tions have the important possibility to build a bridge between o

theory and experiment as they can test theoretical aspects aith N being the number of beads; =|ri—rj| the distance
well as experimentally measurable quantities under well conbetween two chargesy; the charge of theith bead, kg

trollable conditiong(see, e.9.[2]). the Boltzmann constant, anfl the temperatureb= v(b?)

The aim of the present work is not to give a description of 5 phong vectory{b)=0) is the expectation value of the end-
polyelectrolytes in solution that is as physical as possible bufy-end distance of a corresponding random walk, which is
to test certain theoretical concepts for model systems. Thgypposed to model a neuti@l chain in between the charges
question whether the theories of Odjj&] and Skolnick and  with b2 Kuhn steps. This also allows a comparison to experi-
Fixmann([4] (for the rest of this paper referred to as OSF mental systems. All lengths are measured in units of such a
remain valid for intrinsically flexible chaini,6] or whether  Kuhn segment length. Some models use a continuous charge
several variational ansatz€-9] give the right description distribution. For large systeriand especially large and me-
is addressed in this work. Because we are looking for thelium distancesthere should be no difference between these
advantages and shortcomings of the two treatments of thepproaches and our model. In this respect our model is
very same model, we employ exactly the same Hamiltoniamearer to experiments and therefore should be the choice.
as all the above papers. The polymers are modeled by bead- In Sec. Il the computational method and the calculated
spring chains. Every neutral part in between two chargesjuantities are introduced in detail, followed by results con-
which is supposed to be a random walk, is represented by @erning chain radii, bond stretching, and attempts to find
harmonic spring and the charged monomers interact vigcaling variables. In Sec. IV the scaling plots of our system
screened Coulombic interaction. The screening of the courare shown. A crossover from a blob pole behavior to the
terions is usually accounted for by the solution of the linearself-avoiding walk(SAW) regime is found. In Sed/ a more
ized Poisson equation, the Debyedhal (or Yukawa po-  detailed test is employed to directly access thdependence
tential Vpy. This, however, is known to be a rather crude of the persistence length by calculating the bond angle cor-
approximation [10]. With rp=1/k being the screening relation including a careful analysis of finite size effects. To
length the potential reads support these overall results, the chain structure factor is ana-

lyzed in Sec. VI. Similarities with recent computer simula-
tions of strongly charged polyelectrolytgs0] are found. Fi-
"Present address. nally, Sec. VII will give a short summary and outlook.
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Il. MODEL AND SIMULATION METHOD :

As already noticed, the theoretical description is based on
an underlying® chain, represented by the harmonic poten-
tials between successive monovalently charged monomers.
Those monomers interact via a DebyéeeKel potential lead-
ing to the Hamiltonian2). For such a system with strongly -
fluctuating bond lengths, there is a natural need to equilibrateb /o
the short and long length scales as well as possible. To do so,
we combine a velocity verlet molecular dynami@¥D) B b
coupled to a heat bath with a Monte Carlo procedM€E). I
For the Monte Carlo part the off-lattice pivot algorithm § A A
turned out to be the most efficient choice. The MD part is A
performed at constant temperatukgT=1.0e using the 10
Langevin thermostat with damping constant 1.0~ and
time step 0.0125 where 7 is the characteristic time of the
SyStem[le]'.We typically Star.t with some 100.0 MD steps to FIG. 1. Relative stretching of the bond lendttas a function of
allow for initial bond stretching. Then the pivot procedure ;o N=128.
equilibrates the large scale structyseveral 10 000 steps

Then MD mixed with rare pivot steps generates the fmal(N—1=511)><(b=162)=511><256%131 000 MonoMmers.

configurations. For comparison aIsp simulations W|th flxedComparing this system to a NaPSS-PS block copolymer
bond length were performed. In this case only the pivot al'(molecular weiaht'm —221 andmps=104) we reach
gorithm is used. Systems embedded in three and in two dlfnolecular wei ghts. b:aposrfc_i 13 000 OOES_/mol which is be-
mensions were simulated. The latter was done to compare 9 Y 9 '

our results for the bond angle correlation function with thoseyond experiment. Even for strongly charged chains our sys-

S . . tems lie in the experimentally relevant region; e.g., a
of Barrat and Joanny12] . The equilibrium is defined by : . ' '
comparison of two extreme starting conformations: the rang's_s[?#]z t?fr??h(;?a;?/erpa?rﬂfg %gr?omaef?sséﬂavrvgaéde;icuhn?ser the
dom walk and the totally stretched state. The equilibrium is ownpto be reason{lble by experiments—monomer size
reached when both simulations produce the same values 8 y exp

several testing quantities such as the end-to-end distan(:%z'SA’ \p~7.14A—and very similar to oub=2 chaing

Rung: the radius of gyratiog , and the bond length. The models a molecular weight of at least 340 000 g/mol. All in
program uses the vector facilities of a CRAY YMP super-a”' we can cover the experimentally relevant parameter
computer and simulates 640 independent polyelectrolytépace by varying our parameters.

chains in parallel(Only for N=512 the number of polymers

was reduced to 32DIn a similar way the algorithm can be ll. FIRST RESULTS

parallelized trivially. When equilibrium is reached, the quan-

tities of interest are averaged over the 640 chains. Note th;r t\DNue to the Coulorrl;b repulsi?ntoLtr:je _(lz_r;]arges, fhe springt]_s
we have 640 truly independent states, giving true statistic etween monomers become stretched. The usual assumption

errors of 4% only. For local quantities that allow for an in- IS that the chain structure insid_e a bI.Ob is not strongly af-
trachain average the statistics are even better. fected by the Coulo_mb Interaction. Figure 1 shows an ex-
The screening parameterwas varied fromx=0.001 up ample of the stretching as a function of As expected, the

_ ; i : ller x, the stronger is the elongation. With increasing
to k=0.48 (in extreme casgsgiving a Debye screening sma . . .
length between 1000 and 2.08Bhis covers length scales bond length(reduced effective charge densitine relative

smaller than the distance between two successive charges giretching decreases for fixad Taking all the data, the ten-
9€S YRncies are unambiguous but no simple power law can be

to larger than the whole chain extension. The Bjerrum IengtrEjeduced. It is important to take care of finite size effects

It?]élxlgdhtr?é?: 16f-r tT]?aunr:EjI(aerrI]gtr]h Isngeprg??a?:jghg |egiqkt2 gfe_resulting from the free chain ends. Apart from these end
u P u ying neu w monomers, the bond length distribution is flat.

tween the charges, which are modeled by the _har_monlc A characteristic quantity for the shape of the chains is the
springs. Several values of the degree of polymerizabibn ratio r = R2 JRQ as it sensibly measures the large scale
allow one to examine the finite size effects, which appear to end G y 9

be very strong and extremely relevant in experiments tog,tretchlng ‘1'“e to the Coulomb repulsion. Here
(see Sec. Y. By combining the different chain lengths with Renc= V(frn—r1)®> is the end-to-end distance and
five values of the bond length, the whole experimentally Rg= \/(1/N)E{“:1(Fi—FCM)2 is the radius of gyration. For
relevant range of molecular weights is covered. This facrandom walks this ratio equals 6 while for a totally stretched
points out that the comparison of our resulesg., for the chain 12 is expected. A value around 6.3 is known for SAW.
structure factor, see Sec. Miith experimental data should Figure 2 shows that beginning in a SAW regime the chains
be possible and allow some conclusions on the general vare stretched up to a value of 10. Even for extremely weakly
lidity of the Debye-Hwekel approach. We use chain lengths screened systems{=1/x > chain dimensionsthe chains
N=16, 32, 64, 128, 256, and 512 and bond lendgths?, 4,  are not totally stretched. This is in accordance to recent
8, 10, and 16. Taking into account the relativagnd simulational results of strongly charged polyelectrolytes
for a random walk, our largest polymer consists of[10]. Nevertheless in Sec. IV it is shown that these chains
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FIG. 4. Lpk vs 1k for N=128. The persistence length is the

_p2 2 : —
FIG. 2. r=Ren{Rg as a function ofc for b=2. numerical solution of the wormlike chain equati8).

form straight blob poles. Furthermore a saturation is found

This kind (.)f finite size effect will play an important role in (see Fig. 4. In spite of the fact that our chains are not exactly
the analysis of the bond angle correlation functisee Sec. miike and of the finite size effects, this result is a clear

V). Increasing the degree of polymerization from low valueSyins that noth theoretical predictions could be wrong for all
leads to stronger stretching as the mean energy per MONOM&liavant chain lengths
increases. Whel is large enough, the effects of screening Some theoretical abproaché]eﬁ] use kb and Ag/b as

show up, leading to a reduction of For infinitely largeN  s.7jing narameter combinations. We checked the scaling of
(and finiter p) all systems converge towards th‘? SA_‘W Valueour data withkb (\g is fixed) aiming for a reduction of the
around 6.3. As Fig. 3 shows, the crossover region is stronglygsective dimension of our parameter space. As expected by
dependent o and «. looking at the explicit form of the Debye-idkel potential no

The electrostatic persistence lengih is the main target gimpje scaling can be figured out. Figure 5 demonstrates this
of our analysis. First we take a direct route to calculate,, e simplest case.

Lp. Rengfor a wormlike chain is given by15]

sloped curves meaning a sublineak ldependence ofp

IV. SCALING

—L
2 _ 2

Rena=2LLe 2LP( ! expﬁ ® In spite of the failure of these simple “scaling” attempts
. 5 ] ) there should be a possibility to work out the scaling proper-
with L=(N—1)b“ the contour length. Having andRg,y ties of our data, using the concept of electrostatic bldis
Lp is determined numerica”y. The IImItlng behavior is that In ana|ogy to neutral po|ymers a blob is defined by the num-
of a random walk and not of a self-avoiding walk. Thereforeper of monomerg), for which the total energy equalgT.
the SAW behavior shows that our chains are not exactlyzs noticed in Sec. Ill, the bonds between the charges are
wormlike. Assuming the variational methods to be right, stretched so that the assumption of unperturbed chains within

Lpx should be independent ot while in the OSF case the blobs has to be dropped. Nevertheless, this definition of
Lpx~1/k. Plotting Lpx versus 1k leads to negatively
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FIG. 3. r=RZ,{/R as a function oN. FIG. 5. End-to-end distance V¢ for bx= const.
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FIG. 6. Typical conformation of a blob pole with blobs indi- FIG. 7. RZ,{ £ as a function of./¢: No scaling of our data with
cated by circles =32, b=2, and k=0.04). The projection is ¢ is found.
chosen to display the longest axis in the paper plane.
subunits of the chain is very useful. Le=—)\28—2, (5)
First of all, the question of how to estimate the blob di-
ameter¢ has to be settled. To avoid unnecessary assumptions ] ]
(e.g., ideal chain statistic inside a b)oe calculatedt from ~ WhereA is the distance between two charges along the con-
our data. The blob is defined by the number of monomersour of the chaln. Khokhlov and KhatchatunEt?ﬂ claim that
go for which the sum of electrostatic and bond stretching_after averaging over the tran_sversal f_Iuctuatlo_ns of the flex-
energy equals the thermal enerigyT. Clearly, only the ex- !ble chaln_s the_same formalism applies t_o this “renormal-
cess energy beyond the neutral elongation of the bond i&€d” chain, which is represented by a chain of blobs. There-
taken into account. We restrict ourselves to central monofore, within the framework of a blob picture they formulate
mers to avoid artificial chain end effects. The knowledge of©r Lp explicitly:
ge and of the internal distances determirgesThe « depen-
dence of both quantities is rather we@tow decrease with )\Bg§
decreasingk), while the influence of the bond length is LeNKZ_é:Z' (6)
much stronger.

The meaning of these blobs is less profound as for neutra+his means thaf\ is defined asA~ £/g, since every blob
monomers, especially due to the loss of ideal chain StatiStiC%onsists ofg. charges, which have aemean distancezof
e L]

Nevertheless, this kind of ¥-dependent coarse graining” is (imagine two charges of strengty, in the center of two

Egzzgﬂg{igﬂggtg@te& and strongly recommended by Ouradjacent blobs The number of persistence lengths per chain

From neutral chains one would expect a scaling of th Is calculated aNg/gelp. N/ge is the number of blobs so
chain radii with¢. This, however, does |F’)10t work out ﬁere asethat N¢/ge is the contour length of the blob chain. This
. ' ' means that the quantity at the abscissa is the ratio of contour

F_|g. |7 SlhOWS.fOthI.OUSWf th% per&sgen_ce I?Qgﬁ;]s not a length to persistence length. The results for both theories are
simple linear function ofs. Remembering that the persis- shown in Figs. 8 and 9. It is important to realize that the

tence Iength Qefines a kind of stiff chain segment length th ersistence length is the sum of the electrostatic lpaend
chain dimensions should show a characteristic dependen ¥e intrinsic persistence lengthy:

on Lp. Therefore one should investigate.,; plotting
R2,/L3 versus the number of persistence lengths per chain.
Using the Odijk formula and a formula due to the variational
ansatzes a direct comparison of the scaling properties of the . ) )
two different theories is possible. All variational theories In the case of a blob pictutiey= £. UsingL, equal to unity,
predictL .~ 1/«. Explicitly for a blob picture Ha and Thiru- Which is the intrinsic persistence length of the neutral chains
malai gave[8] between the charges, leads to scaling plots similar to the ones
generated according td) and(5) with a little worse scaling
in the SAW regime. Nevertheless the intrinsic part is of enor-
Je [N\g : o :
Lo~ —\/—. (4) mous importance. Omitting., and usingL. only destroys
K & the scaling in the SAW regime in the OSF case, while the
variational scaling holds quite well for our parameters. This
The OSF theory3,4] predicts accounts from the fact that in these cases the inequality

Lp:Le+ Lo. (7)
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10t . 0 b=2, k=001 chain the behavior crosses over to a regime of slope 1.2. This
2 2 O b=2, k=002 . . . .
R7/L & be2, k=004 is a SAW regime where the dependencelgnis explicit:
€ P A b=2, x=0.16
10° ¢ L~ 1k b=2, =048

_ ! 2 6/5£6/5 6/5
oy &NXG/SZN 3 —R2~ ﬁ | 4/5
¢ b=4, x=0.04 L2 675L675 e P -
P e Lp e
0 b=8, =004 Here something should be seen, but thedependence of
£b=16, k=0.001 R, again seems to be so weak that no difference can be

0" el figured out. The scaling is dominated by the intrinsic part
' by and is therefore more or less Ahscaling. All in all, the fact
10° /i(g/ﬂ X b=16, x=0.04 that such an enormous amount of data collapses nicely over
. #b=16, k=0.08 . .
. rd Ob=16, k0,16 a lot of decades onto one curve, which describes very well
107 ¢ g o the chain behavior from the blob pole in the case of weak
ot L o screening up to the SAW regime, demonstrateslthas the
relevant statistical segment length. As a central result of this
10° = N - - ' chapter remains the demand to find a more sensitive quantity
10 1 10 10 10 t the persistence length directl
number of L, per chain: L/L, 0 measure p g Y.
FIG. 8. Scaling plot due to the variational ansatR%;{/L3 vs V. BOND ANGLE CORRELATION FUNCTION
L/Lp. L/Lp is the number of persistence lengths per chain, AND PERSISTENCE LENGTH
Le~1/k.
° The most direct definition of is simply geometrical
Le ose<Lg holds, meaning that the electrostatic contribution[14]:
is much smaller than the intrinsic persistence length while N/2—1
I—e,var“*>~|-0- Lo=— 6 5 .+6 6 . 8
From the first view it is clear that both theories show quite P2 Z’l (Brz- Bz + b Bz i), ®

good scaling. There is no way to distinguish them. To ex-

plain this, it is necessary to divide the plot into two parts. For5i again being théth bond vector. In the case of exponen-
small X values the plots show straight lines with slope two.tjally decaying angular correlations, this approach is identi-
This is the regime where the chains build up blob poles. Theal with the calculation of the bond angle correlation func-

dependence ohp cancels out as is easily seen: tion (fgac). feac can easily be formulated for a continuous
) model by comparing the normalized tangent vectorsatd
Re N2¢? N2 t+At. In our bead spring modelg,c is defined via the
_° X2: — RZ"" _ 52 X
L2 92L2 e g2° scalar product of two normalized bond vectors:

> >

The end-to-end distance is proportional to the number of _ i Dok \ - -
blobs times the blob diameter. For larger numberg ofer fBAC(k)_<”5j ' H6j+k” =(cog &(bj,bj)]), (9

10 ¢ ob=2=00t  whereg(b;,b.) is the angle between the two bond vectors

R R’/L’ o © b=2, k=004 and( ) indicates the average over all polymers.
L € P A b=2, x=0.16 A . . .
< b=2, k=048 Since the persistence length is defined as the decay con-

b o tour length of all angular correlation§gac should show—

» e . after some “transient time” representing the inner part of the
* bt 001 blob—an exponential decay, similar to a wormlike chain for
O b=8, x=0.04 which

& b=8, k=0.16

Ab=16, x=0.001

<Ib=16, k=0.0025

k
et s fBAc<k>~exp( - L_p> (10

4 +b=16, x=0.02
102 X b=16, k=0.04
£ *b=16, ©=0.08 i L.
N o Ob=16, k=0.16 applies, giving

Ob=32, x=0.04

i < b=10, x=0.01
“ /{ Ab=10, ¥=0.02 N . k k
10* & Ab=10,=0.04 B(k)=In(cosp(b; ,bj))~In exp(——)z——.

10° (11

L, ~ e

10" 10° 10 10°
number of L, per chain: L/L,
To improve averaging, the reference pojnt not fixed but

FIG. 9. Scaling plot due to the OSF approadtf, /L2 vs  moves along the chain. Clearly, this procedure leads to a big
L/Lp. L/Lp is the number of persistence lengths per chain,improvement for small and mediurtk while the effect is

Lo~ /2. rather poor for larg& because only few large distances are
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TABLE |. Persistence lengthisp, and effective exponentg.

: b=2
. e P v vy N=128 N=256
1 "’»,. W
Sy 1 1k Lp Lp/L y Lp Lp/L y
N “a\& W»».&,,} 400 948.6  1.853 2366.88  2.311
B “a T 0.11 0.37
- L »
| S e T 100 813.56  1.589 1418.44  1.385
o, LG 0.32
5 | & *x=0.0025 RIS EIE TR B 50 652.16  1.274 - 0.87
= = k=0.01 i ' PN
a s k=0.02 « 4 % * 0.78
6 | T k=004 « ) 25 380.96 0.744 42372  0.414
» » k=0.16 «
<« x=0.48 < g 0.86 0.80
7 e et l 6.25 116.32  0.227 139.24  0.136
0 50 100 150 200 250 300
contour length L =N b — 0.55 0.46
2083 6344 0.124 84.28  0.082

FIG. 10. Logarithm of the bond angle correlation function for

N=128,b=2 and the specified values. - . . .
P x=0.04 shows no finite size effects. Figure 13 points out

pat this badk value forb=2 works quite well forb=8,

available. To avoid problems due to free ends, the outermo% o
blobs are not taken into accouf.g., 20 monomers on each ecause the regar_ded chain is roughly a factqr .Of 4. longer
' and therefore not influenced that strongly by finite size ef-

side forN=128). Another correlation function was definedf s It is obvi that this effect will sh : ;
by calculating the bond angle correlation function of the ects. 1t 1s obvious that this effect will show up in experi-

linking vectors between the centers of masses of the blob@egltls as vlve"[ll.d ¢ vzed in thi d lead
All these methods lead to the same results within the error- simulated systems were analyzed in this way and lea

bars. Only data averaged with the first method are showrf® the SaME answer. To figure out the _ianL_Jence of the bond
Figures 10 and 11 sho® for the systemN=128,b=2 and stretching, we performed simulations with fixed bond lengths
N=256, b=8, respectively, at the specified vélues. The (see Sec. )L Additionally, we analyzed two-dimensional
corresponding Tables | and 11 give the resulting persistencgyStemS for both cases. The qualitative behavior is the same

lengths and effective exponengsfor subsequeni values. ![Eea" gﬁssi:tse;nzzelgretﬁ“ils :gﬁg:fg;;lf te:?ﬁﬂengﬁgcser:;"er
All exponents are clearly smaller than one. In thre2 case P 9 y varying

saturation is found. The exponent goes to zeradgoing to than 1(see Fig. 1%

zero displaying strong finite size effects since the persistence

lengths exceed the size of the chains. Therefore the ability of

the chain to stretch is exhausted and the increasg iman-

ishes. To prove the validity of our arguments we have toNo unique power law can be derived, even if finite size ef-

compare these systems with larger chains. Figures 12 and I&8cts and the statistical errors of the data are taken into ac-

show two examples. There is an enormous difference focount. Nevertheless, this puts the results of Secs. Il and IV

b=2 and «=0.01, while the opposite extreméb£16, on a profound basis. But they are in strong contrast to all
known analytical results. Recently, a new field theoretical
approach was suggested pointing towards a sublinear behav-

Lp~1/kY; y<L1. (12)

ior [16]. The common tendency with our data is encouraging,
however, no mapping of the data was possible so far.
TABLE Il. Persistence lengthkp and effective exponentg.
b=8
B N=128 N=256
- ‘ ’,‘ 1/K Lp LP/L y Lp LP/L y
L P 'k 400 6508.16  0.794 8976  0.548
= "‘ j\‘\\\ #‘ | ‘ “ & M 0l33 0-39
TR0 i | v 100 411456  0.502 5246.08  0.320
Lo i =004 | I 0.53 0.58
v Tr=016 ‘ | ‘l’ h‘ 25 1954.56  0.239 2361.6  0.144
o 2000 4000 6000 8000 10000 0.31 0.45
contour |ength L=N b2 6.25 1276.8 0.156 1262.08 0.077
_ 0.43
FIG. 11. Logarithm of the bond angle correlation function for 2.083 791.04 0.048

N=256,b=8 and the specified-values.
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FIG. 12. Finite size effects on the logarithm of the bond angle ~FIG. 14. Persistence length basedins 1/k. The two lines in
correlation functionb=2 and«=0.01. the upper left corner indicate the slopes predicted by @8Ehed
and the variational methodsolid). The model system should give
VI. STRUCTURE FACTOR the best description for weakly charged polyelectrolytes and there-

fore the upper curves.
To examine the chain conformation in detail at all length

scales we calculate the spherically averaged structure factor 2 2
S(q). Additionally, the structure factor along the main axes R << o
of the gyration tensor of the chains is determined. The struc- end

ture factor allows direct comparison to experimental data a”‘?/iewing the polyelectrolytes as composed of rodlike seg-
is a necessary input for some theorjé3,18. ments of length_p, which form an ideal chain, the scaling is
expected to have the following form:

N

> exdig-(ri—r)]

i<j

! 2 13
S(a=\y . (13
This formula demonstrates th&fq) is the Fourier transform
of the pair correlation function. The restriction to a certain@"
direction means a restriction of to this direction. 5

The scaling ofS(q) is predictgq/in anal'ogy to the neutral S(q)~q~?! for g> _77_ (15)
case, wher&, o ia(q) scales agl™ -, v being the exponent Lp
of the N dependence of the chain rads.g.,»=0.5 for ideal
chains and roughly 0.59 in good solvgrithe range of va- Therefore they value at the crossover can be used to calcu-

lidity is determined by the extensions of the polymer: late a measure for the persistence length. .
First of all, theN dependence 085(q) is examined to

determine possible finite size effects. Figure 15 demonstrates

21
S(q)~q~? forq<L—P (14)

50 - e—eN=128 Loy
na N =256 i

L
14000

-6.0 I I I I I I
0 2000 4000 6000 8000 100200 12000

contour lengthL=Nb

FIG. 13. Finite size effects on the logarithm of the bond angle FIG. 15. Finite size effects on the structure factortier2 and
correlation functionb=8 andx=0.01. «=0.01.
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10° | ‘
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FIG. 17. Spherically averaged structure factor and fits for

FIG. 16. Structure fact llel to the first mai is of -
G. 16. Structure factor parallel to the first main axis of gyra N=256,b=8. andi=0.48.

tion for N=256 andb=2.

that the finite size effects 08(q) are relatively weak, since
all curves deviate from thé&N=256 line only roughly at
0~27/Repg. - .
Looking first at the spherically averaged quantity showswheref andvp are fitting parameters. In the case of an ideal
that the logarithmic slopes seem to vary continuously bechain f equalsRg/2 and vp=0.5. For our system$ is
tween one k very small,b=2) and two  very large, roughlyRg andvp varies between 0.59 and 0.92. Again the
b=16). As expected, the chains get stiffer with decreasing/ariation over the whole conformational range from a SAW
«, leading to smaller slopes. This is consistent with the pici0 an almost rodlike chain is reflected by these exponents
ture of the blob pole coming from scaling. To make this (see Figs. 17 and 18 S .
point even clearer, a plot of the structure factor parallel to the The kink can, for instance, be identified by the crossing
first main aX|SS”(q) is given_ In the |0\Nq regime pro- pOInt of the two f|tt|ng fUnC“an. USIng th|q value to cal-
nounced oscillations are recognizéske Fig. 16 Such os- culate a measure of the persistence legteads to results

cillations are expected for a rigid rod of which the structurethat agree qualitatively very well with the values of the bond
factor is given by angle correlation functiofsee Fig. 19 and Table )llAgain,

the sublinear ¥ dependence is recovered. This result is in
strong contrast to simulations that take the counterions ex-
1 1-cogNbq) plicitly into account where a &/ dependence was suggested
Srod 9= 1= cogbyq) - (16 by the datd10].
If we had taken the neutral monomers between the
charges into account, we would have found a nontrivial ex-
The first minimum is located atj,,q=27/Rens=27/NDb. tension of the structure factor to highggvalues. Remember-
This dependence is reflected by our data. The first minimum
is especially for strong interacting systems given Ry,q.
Clearly, increasinge leads to a shifting and a smearing out : ‘
of these oscillations.
The analysis of the component perpendicular to the first 10° |
main axisS, (gq) is much more difficult. The elongation of
the chain is rather small in this direction limiting tlgein-
terval of interest. Due to statistical fluctuations, it is difficult
to determine very precise values, but the tendency is clear: Ssp

N
SGD(Q)ZW, 17

The exponent is a function &f and « and varies in the range 10' ¢ 1
0.58<v<0.8. All in all, the behavior ofS, (q) is similar to
the spherical averaged quantity in the highegime. Similar ° ’E‘)“eas‘”e’“e?‘
. K T M - Debye function y
v values were actually found in simulations of strongly ~—- general. Debye function %
charged polyelectrolyted 0]. y
The spherically averaged structure factor shows a kink 10° | 3
between two regimes of different slopes. The Iqwpart is 10° 102 PP R 10'
well fitted with a Debye functiorfiwhich is expected at least q

in the Guinier regiop The highg regime can be described
by a generalized Debye function as has been used success-FIG. 18. Spherically averaged structure factor and fits for
fully for strongly charged polyelectrolytd40]: N=256,b=2, and«x=0.0025.
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mm————— . total structure factor
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FIG. 19. Persistence length based on the crossing of the fitting FIG. 20. Structure factor extended by introduction of neutral

functions vs 1&. As theq values measure direct distances in space,,nomers compared to the structure factor of the charges only and
and not along the contour of the chain the absolute values dn‘fe{0 a Debye function foN=256,b=8, andx=0.01

from those resulting from the bond angle correlation. For quantita-

tive comparison, the values have to be scaled by the bond length VIl. CONCLUSIONS
b. This would not lead to new information as the essential sublinear '
behavior will not be affected by this transformation. The behavior of single, intrinsically flexible, weakly

_ ) charged polyelectrolyte chains is examined by extensive nu-
ing that our bonds represent random walks and knowing thg,erica| simulations. Varying, b, andN the whole relevant

structure factor of a random walk to be a Debye function, we, .o ot space can be covereelependent chain stretch-
are able to exte_:nd the_calculated strucyure factpr of our pol ing on both short and long length scales is reported. The
electrolyte chains to higher values by introducing the De- gcajing piots of Sec. IV demonstrate the crossover from a
bye function into the plot. The measurg(t]) and the Debye |5} pole to a self-avoiding walk regime.

function leave only a small gap that can be smoothly contin- |, order to clarify the question whether the OSF theory is

ued to give one curve. The gap is due to the pair correlatioengaple to intrinsically flexible polyelectrolytf,6], we
of monomers of different random walks which is inevitable t,c\;sed on the calculation of the electrostatic persistence

in this easy apprcz)ach. By introducing ideal neutral ch'ains Ofength, because this quantity is given explicitly by all theo-
step width onep” steps, and accurate end-to-end distanC&egical approaches. Using several different methods, we al-
and calculating the structure factor of this system, the Va"dWays end up with the same result: The persistence length

ity of this simple approach is proven as Fig. 20 demonstrate%ependS in a sublinear way onklWithout showing a clear
All in all, the calculation of the structure factor repro- unique power law:

duces only the roughest features of the scaling pictikirgk

at Lp separates two regimes of different slopednfortu-

nately, it resists fitting any detailed theoretical descriptions. Lp~ P y<1.
All conclusions of the former sections are verified. Espe-

cially the results on the persistence length are recoveredypis is in strong contrast to the analytical predictions, which
|mpres_5|vely showing the overall consistency of the present,, o 1/2 (OSF[3,4]) or 1/ (variational method$7—9]).
analysis. Although some systems are influenced by strong finite size
effects, which will be relevant even for experimental systems
but are controllable in computer simulations, this result is
unequivocal. A 1#? dependence can definitively be ex-

TABLE IlIl. Persistence length&p and effective exponentg
from structure factor

N=256 cluded. There exists no hint for a convergence towards a
b=2 b=8 1/x behavior in our data, although we choose the smallest
1/x Lp y Lp y Debye radius smaller than the smallest bond length and the
biggest larger than the whole chain. Unfortunately, no clear
400 305.45 543.53 power law with a well-defined exponent shows up. The ex-
0.05 0.16 ponent itself seems to depend bnand « for all relevant
100 284.82 437.58 chain lengths :y=y(«,b). Especially the structure factor
0.23 0.38 calculations strongly support these results.
25 207.09 257.61 Recently, a sublinear dependencelgf with respect to
0.53 0.71 1/k was suggested by a new field theoretical, variational ap-
6.25 99.94 96.84 proach[16]. The qualitative agreement of this solution with
0.73 0.77 our data is an encouraging sign. It can be concluded from our
2083 44.79 41.54 simulations that the stiffness of intrinsically flexible poly-

electrolyte chains is much less influenced by the screening
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parameter as expected. For that the fraction of chargegime, where the intrinsic persistence length is dominating, to
(equivalent to 13?) plays an important role, too, since it the regime of extremely flexible chains described by our
determines the entropy. It is obvious from our data that thelata.
entropic part of the free energy is underestimated by all
known analytical approaches f¢at least all relevant chain
lengths. While most large scale properties are well under-
stood by simple arguments, there exists a lack of detailed
understanding, as is demonstrated at the example of the elec- We would like to acknowledge stimulating discussions
trostatic persistence length. An interesting challenge for fuwith M. Stevens, J.F. Joanny, A. Liu, P. Pincus, and espe-
ture work on this topic should be the variation of the intrinsiccially R. Everaers. A large grant of computer time at the
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